MONTHLY WEATHER REVIEW

AEROLOGICAL OBSERVATIONS

[Aerological Division, W. R. Gregg, in charge]

By L. T. SAMUELS

Free-air temperatures during November were practically normal in the lower levels and above normal in the upper levels at the midwestern and western stations, and mostly below normal at the eastern and southern stations. (Table 1.) The mean temperature for the month at San Diego is of special interest in that a marked inversion occurred from the surface to 1,000 meters, whereas the normal lapse rate for November at this station is positive. In this connection it is noted that a greater northerly wind component than usual obtained at the surface at this station during the month, which probably was a factor in causing the temperature to be below normal; also, the usual prevailing northeast wind at 500 and 1,000 meters was replaced by an east and east-southeast wind, respectively, which likewise probably was a factor in causing the mean temperatures at those levels to be above normal.

Free-air relative humidities averaged mostly above normal except at Omaha and Washington, where negative departures occurred.

Resultant wind directions in the lower levels were close to normal except in the southeastern section of the country, where a pronounced northerly component prevailed as compared to the normal westerly. (Table 2.) Resultant velocities at these levels were below normal at most stations.

At the higher levels resultant directions were close to normal with resultant velocities considerably below normal at most stations, except in the northwestern States where velocities were generally in excess of normal.

Five airplane observations were made during November at Fairbanks, Alaska, as part of the International Polar Year program. In connection with the latter a total of 91 sounding-balloons were released at Dallas, Ellendale, and Omaha between August and December, 1932, inclusive. From 57 (63 per cent) of these balloons the instruments already (December 29, 1932) have been returned.

Table 1.—Free-air temperatures and relative humidities during November, 1932

TEMPERATURE (° C.)

	Atlanta, Ga. (303 meters) 1 Boston, Mass. (4 meters)		ass.	Chicago, III. (187 meters) 3		Cleveland, Ohio (246 meters) ³		Dallas, Tex. (146 meters) 4		Ellendale, N. Dak, (444 meters)		Omaha, Nebr. (300 meters) ⁵				San Diego, Calif. (9 meters) 6		Washington, D. C. (2 meters) ⁶		
Altitude (meters) m. s. l.	Mean	Depar- ture from normal	Mean	Depar- ture from normal	Mean	Depar- ture from normal	Mean	Departure from normal	Mean	Depar- ture from normal	Mean	Depar- ture from normal	Mean	Depar- ture from normal	Mean	Departure from normal	Mean	Depar- ture from normal	Mean	Depar- ture from normal
Surface	6. 3 6. 7 6. 9 6. 5	(7) (7) -1.5 2	4. 0 2. 5 1. 7 1. 0		-0.3 0 2 5	(7) (7) -1. 6 6	1.8 2.0 .3 -1.4	(7) (7) -1. 1 -1. 5	5. 5 9. 3 9. 3 8. 3	(7) (7) 5	-2. 4 -2. 5 -1. 0 7	-0.1 2 +.9 +1.5	-1.8 4 2.2 2.3	(7) (7) 8 +. 1	11. 4 11. 7 11. 1	-2. 2 -1. 6 9	15. 3 17. 9 18. 5	$ \begin{array}{r} -2.6 \\ +1.0 \\ +2.2 \end{array} $	1. 3 2. 5 2. 5	-4.3 -3.0 -1.8
2,000	5.3 3.7 1.1 -4.9 -12.2	+.3 +.5 0 5	-3.9 -3.9 -8.7 -15.1		-1.3 -3.0 -5.4 -10.7 -16.6	$\begin{vmatrix} +.4 \\ +.6 \\ +.5 \\ +.1 \\ +.2 \end{vmatrix}$	-2. 2 -3. 9 -5. 7 -10. 7 -18. 2	5 3 +.2 +.1 -1.4	6. 4 4. 4 2. 6 -2. 5 -8. 4	1 0 +.6 +.8 +.8	-2.1 -4.7 -7.7 -14.2	+1.7 +1.3 +.9 +.1	1. 2 5 -2. 6 -8. 8 -15. 3	+.8 +1.4 +1.9 +1.2 +.3	8. 5 3. 8 -2. 0	9 -1.5 -1.5	14. 7 10. 1 4. 2 -3. 0	+3. 2 +3. 9 +3. 9 +3. 9	1. 1 -1. 4	2 +. 3

RELATIVE HUMIDITY (PER CENT)

Surface	84 82 74 66	(7) (7) +12 +8	69 65 64 59	80 75 67 61	$\begin{pmatrix} 7 \\ 7 \\ 7 \\ -1 \\ +2 \end{pmatrix}$	78 75 72 66	(7) (7) +4 +7	74 62 53 49	(7) (7) -6 -3	75 74 65 59	$ \begin{array}{c} -3 \\ -2 \\ 0 \\ +1 \end{array} $	76 68 55 47	(7) (7) -3 -6	84 79 72	+2 +4 +4	75 59 46	+17 +9 +7	77 65 57	+3 0 -3
2,000	60	+7	53	56	+3	57	+4	45	-2	61	+6	45	-5	59	+4	34	+5	44	-9
2,500	53	+8	51	52	+3	56	+7	43	+1	63	+9	44	-5						
3,000	52	+11	50	50	+2	55	-1-7	40	+2	65	+11	42	-8	52	l +8 l	29	+4	32	-6
4,000	45	+10	47	47	+3	52	+8	37	+3	48	-8	44	-7	52	I ∔8 l	26	<u>∔</u> 4		
5,000	45	+22	45	47	+1	54	+8	36	+4			44	-3			25	+4		
			<u> </u>			l	'										' ' '		

¹ Temperature and humidity departures based on normals of Due West, S. C.
2 Observations made by Massachusetts Institute of Technology.
3 Temperature and humidity departures based on normals of Royal Center, Ind.
4 Temperature departures based on normals determined by interpolating between those of Groesbeck, Tex., and Broken Arrow, Okla. Humidity departures based on normals of Groesbeck, Tex.
5 Temperature and humidity departures based on normals of Drexel, Nebr.

Naval air stations.
 Surface and 500-meter departures omitted because of difference in time between airplane observations and those of kites upon which the normals are based.

Weather Bureau ariplane observations made near 5 a. m.; Navy airplane observations near 7 a. m.; Ellendale kite observations near 9 a. m. (seventy-fifth meridian time).

Table 2.—Free-air resultant winds (meters per second) based on pilot balloon observations made near 7 a. m. (E. S. T.) during November, 1932 [Wind from N=360°; E=90°, etc.]

Altitude (meters)	Albue que, Mex. met	N. (1,528	Atlai Ga (309 m	ı. '	Bism. N. I (518 m	arck,)ak. eters)	Brov ville, (12 me	Tex.	Burlin Vi (132 m	ngton, t. neters)	Cheye Wy (1,8 met	70. 373	Chic Ill (192 m	. ′	Cleve Oh (245 m	io	Dal Te (154 m	las, ox. eters)	Hav Mo (762 m	nt.	Jack ville, (14 m	Fla.	Key V Fla (11 me	West, a. eters)
m. s. 1.	Direction	Velocity	Direction	Velocity	Direction	Velocity	Direction	Velocity	Direction	Velocity	Direction	Velocity	Direction	Velocity	Direction	Velocity	Direction	Velocity	Direction	Velocity	Direction	Velocity	Direction	Velocity
Surface	321 301 302 301 297	1. 1 2. 0 4. 1 6. 6 9. 8 9. 2	22 39 32 301 306 310 333 318	1. 5 2. 6 2. 0 2. 7 6. 8 9. 6 7. 3 8. 6	293 280 281 282 288 276	1. 0 6. 6 8. 3 9. 3 9. 7 12. 2	332 65 144 314 336 310 302 307 315	1.5 1.8 .7 1.4 4.4 4.1 4.8 4.0 4.8	185 222 265 277 284 296 288 322	2. 1 3. 3 4. 7 8. 3 10. 2 10. 3 11. 2 8. 1	280 289 298 304 281	7. 9 14. 9 12. 6 12. 7 6. 5	284 230 244 254 273 276 284	0. 9 4. 3 4. 8 5. 9 5. 4 6. 5 6. 8	206 217 244 250 252 258 267	1. 9 4. 2 5. 3 6. 1 6. 5 7. 7 9. 5	216 213 269 292 303 304 303 293 310	0. 5 2. 7 3. 5 4. 0 5. 1 5. 7 7. 6 6. 0	252 270 281 280 286	2. 0 6. 5 10. 1 11. 2 13. 0 13. 9	350 21 335 299 312 302 272	2. 4 5. 0 2. 4 4. 0 5. 1 6. 7 9. 0	30 44 51 71 315 297 349 295 276	2.8 5.9 2.7 1.3 1.6 1.1 .3 2.6 6.2
Altitude (meters)	Los geles, (217 m	Calif.	Medi Ore (410 m	g.	Mem Tei (83 m	ân.	New leans (25 m	, La.	Oakl Ca (8 me	lif.	Oklal City, (402 n	Okla.	Oma Ne (306 m	br. i	Phos Ar (356 m	iz.	Salt City, (1, met	Utah 294	Sault Ma Mi (198 n	rie, ch.	Seat Wa (14 m	sh.	Wash ton, I (10 me	hing- D. C. eters)
m, s, l.							li .		ll .	l									ll .	- 1	i	- 1		
	Direction	Velocity	Direction	Velocity	Direction	Velocity	Direction	Velocity	Direction	Velocity	Direction	Velocity	Direction	Velocity	Direction	Velocity	Direction	Velocity	Direction	Velocity	Direction	Velocity	Direction	Velocity

RIVERS AND FLOODS

By RICHMOND T. ZOCH

[River and Flood Division, Montrose W. Hayes in charge]

In November, 1932, floods occurred only in the Atlantic slope and east Gulf of Mexico States. None of them was important. The loss amounting to \$3,200, was confined to matured crops in Alabama and was caused by the Tombigbee River.

The following tables show the river-gage stations at which flood stage was reached and the value of property saved through flood warnings:

Table of flood stages in November, 1932
[All dates are in November unless otherwise indicated]

River and station	Flood	Above stages-		Crest		
Triver and Seation	stage	From-	То—	Stage	Date	
ATLANTIC SLOPE DRAINAGE	Feet			Feet		
Farmington: Collinsville, Conn	5	19	19	6.6	19	
Connecticut: Hartford, Conn	16	20	22	18.0	21	
Susquehanna: Oneonta, N. Y	12	20	20	13. 2	20	
Roanoke: Williamston, N. C.	9	7	17	10.5	15-16	
Peedee: Mars Bluff Bridge, S. C Saluda:	17	5	10	17.8	7	
Pelzer, S. C.	6	Oct. 31	2	9.2	1	
Chappells, S. C	12	2	. 4	15.3	3	
Broad: Blairs, S. C	14	$\begin{bmatrix} 1\\ 3 \end{bmatrix}$. 2	17.3	3 2 7	
Santee:		[3	17	15.5		
Rimi, S. C	12	22	24	12.2	24	
· •		27	30	13.5	30	
Ferguson, S. C.	12	2	30	13.6	8	
Jamestown, S. C	12	1	19	13.5	15-16	
Savannah: Ellenton, S. C	14	{ 3 23 28	8 24 30	18. 8 15. 2 15. 8	5 23 28	

Table of flood stages in November, 1932—Continued

River and station	Flood		flood dates	Crest			
	stage	From—	То—	Stage	Date		
EAST GULF OF MEXICO DRAINAGE Choctawhatchee: Caryville, Fla Black Warrior: Tuscaloosa, Ala Tombigbee: Demopolis, Ala Lock No. 3, Ala Lock No. 2, Ala Lock No. 1, Ala Pearl: Jackson, Miss	Feet 10 46 39 33 46 31 18	3 27 {Oct. 17 29 Oct. 17 27 Oct. 18 Oct. 18	6 27 Dec. 3 10 (1) 6 11 15	Feet 11. 1 48. 0 56. 6 41. 8 56. 8 43. 6 57. 5 38. 6 19. 1	4 27 Oct. 26 Dec. 1 Oct. 27-28 Dec. 2 Oct. 29		

¹ Continued into December.

VALUE OF PROPERTY SAVED BY WARNINGS

ATLANTIC SLOPE DRAINAGE

Connecticut River in Connecticut	\$40,000
Saluda River in South Carolina	
Broad River in South Carolina	
Congaree River in South Carolina	3, 000
Catawba-Wateree River in South Carolina	7, 500
Congaree River in South Carolina Catawba-Wateree River in South Carolina Santee River in South Carolina	4, 000
	, ,

EAST GULF OF MEXICO DRAINAGE